HW14 - Second Law & Free Energy

① This is a preview of the published version of the quiz

Started: Nov 8 at 5:48pm

Quiz Instructions

Homework 14 - Second Law & Free Energy

Question 1	0.5 pts
In order for an endothermic reaction to be spontaneous,	
<u>'</u>	
the entropy increase in the system must be greater than the entropy decrease in the surroundings.	
heat must be supplied to the system.	
 endothermic reactions are never spontaneous. 	
the entropy increase in the system must equal the entropy decrease in the surroundings.	
onothing special is required; they are always spontaneous.	
Question 2	0.5 pts
Which one of the following reactions has a positive entropy change?	
$\bigcirc 2NH_4NO_3(s) \longrightarrow 2N_2(g) + 4H_2O(g) + O_2(g)$	
$\bigcirc 2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$	
\bigcirc BF ₃ (g) + NH ₃ (g) \longrightarrow F ₃ BNH ₃ (s)	
$\bigcirc N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	
$\bigcirc H_2O(g) \longrightarrow H_2O(I)$	
Question 3	1 pts
Consider the following processes. Which entropy will increase as the process proceeds from left to right? Select all answers.	of the correct
$\Box \ \ H_2O\ (I) \to H_2O\ (s)$	
□ NaCl (s) \rightarrow Na ⁺ (aq) + Cl ⁻ (aq)	
\Box CaCO ₃ (s) \rightarrow CaO (s) + CO ₂ (g)	
Question 4	0.5 pts

) True	
H ₂ is not flammable.	
False	
$_2$ burning in O_2 to form H_2O (I) is an example of a system where the entropy of the universe decreases.	
uestion 7	0.5 pt
solid, liquid, gas	
liquid, solid, gas	
solid, gas, liquid	
liquid, gas, solid	
hich of the following lists phases in order of increasing entropy? gas, liquid, solid	
uestion 6	0.5 pt
) True	
False, because only heat flow affects the change in entropy, not temperature.	
False, because as temperature decreases there is a greater change in entropy.	
rue/False: For a given transfer of energy, a greater change in entropy occurs when the temperature is high.	
uestion 5	0.5 pt
positive, negative, negative	
negative, negative, negative	
positive, negative, zero	

Carbon dioxide is allowed to expand isothermally to 10 times its original volume.	
☐ The pressure of one mole of oxygen gas is allowed to double isothermally.	
☐ Nitrogen gas is compressed isothermally to one half its original volume.	
☐ A glass of water loses 100 J of energy reversibly at 30°C.	
Question 9	1 pts
Which of the following chemical reactions exhibit a positive ΔS ? Select all of the correct answers.	
$ \Box 2H_2O(g) \rightarrow 2H_2(g) + O_2(g) $	
$\Box \ \ H_2O\ (g) \to H_2O\ (I)$	
Question 10	1 pts
The temperature of 2.00 mel Ne(a) is increased from 25°C to 200°C at constant process. Accompling the hi	not consoity of No in 20.9
J/K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior.	eat capacity of Ne is 20.8
J/K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K	eat capacity of Ne is 20.8
J/K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K -19.2 J/K	eat capacity of Ne is 20.8
J/K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K -19.2 J/K +7.68 J/K	eat capacity of Ne is 20.8
The temperature of 2.00 mol Ne(g) is increased from 25°C to 200°C at constant pressure. Assuming the head of the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K -19.2 J/K +7.68 J/K Question 11	
J/K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K -19.2 J/K +7.68 J/K -7.68 J/K Question 11 The enthalpy of fusion of H ₂ O (s) at its normal melting point is 6.01 kJ/mol. What is the entropy change for	1 pt:
//K-mol, calculate the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K -19.2 J/K +7.68 J/K -7.68 J/K Question 11 The enthalpy of fusion of H ₂ O (s) at its normal melting point is 6.01 kJ/mol. What is the entropy change for emperature?	1 pt:
//K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K -19.2 J/K +7.68 J/K -7.68 J/K Question 11 The enthalpy of fusion of H ₂ O (s) at its normal melting point is 6.01 kJ/mol. What is the entropy change for emperature? +22.0 J/mol·K	1 pt:
J/K-mol, calculate the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K -19.2 J/K +7.68 J/K -7.68 J/K Question 11 The enthalpy of fusion of H ₂ O (s) at its normal melting point is 6.01 kJ/mol. What is the entropy change for emperature? +22.0 J/mol·K -22.0 J/mol·K	1 pt:
J/K·mol, calculate the change in the entropy of neon. Assume ideal gas behavior. +19.2 J/K -19.2 J/K +7.68 J/K -7.68 J/K	1 pt:

CaO (s) 3).75					
- 107	3.74					
CaCO ₃ (s)	2.9					
266.9 J/mol*K						
346.4 J/mol*K						
160.6 J/mol*K						
○ 160.6 J/mol*K						
Question 13						4 nt
Question 13						1 pt:
Ture/False: All er	tropies of fusior	ı are negative.				
True - fusion lea	ds to more micros	states (degrees of freedon	n).			
False - fusion le	ads to less micros	states (degrees of freedon	1).			
True - fusion lea	ds to less microst	tates (degrees of freedom)).			
False - fusion le	ads to more micro	ostates (degrees of freedo	m).			
Question 14						1 pt:
	000 1 51 11		700\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		•	·
A system release	s 900 J of neat	to the surroundings (27	C). What is ΔS (or the surrounding	gs ?	
○ 33.3 J/K						
○ -33.3 J/K						
○ 3 J/K						
○ -3 J/K						
Question 15						1 pt:
When a sugar culand the universe			othermic process), entropy change	es of the sugar plus v	water, the surroundings,
o positive, negative	e, negative					
onegative, positive	e, positive					
onegative, negat	ve, negative					
O None of these a	re correct.					
o positive, positiv	e, positive					

Substance S° (J/mol·K)

Question 16	1 pts
Which substance has the lower molar entropy?	
○ Kr (g) at 298 K and 1.00 atm	
○ They are both the same.	
○ There is no way to know.	
○ Ne (g) at 298 K and 1.00 atm	
Question 17	1 pts
Calculate the standard entropy of vaporization of ethanol at its boiling point, 352 K. The standard molar enthalpy of vaporize ethanol at its boiling point is 40.5 kJ/mol.	zation of
○ +115 J/mol·K	
○ -115 J/mol·K	
○ -40.5 J/mol·K	
○ +40.5 J/mol·K	
Consider the following vaporization reaction. $Br_2(I) \to Br_2(g)$	2
At a certain pressure, ΔH° = 34 kJ/mol and ΔS° = 0.098 kJ/mol·K. What is the lowest temperature at which this process is	spontaneous?
○ 347 K	
○ -347 K	
○ 0.00288 K	
○ 74 K	
Question 19	1 pts
For this problem, you will have to look up ΔH_f° and the S° values from a table. Estimate the minimum temperature at which be reduced to iron by graphite.	n magnetite can
$Fe_3O_4(s) + 2C(s, graphite) \rightarrow 2CO_2(g) + 3Fe(s)$	
○ 535°C	
○ 787°C	
Magnetite will be reduced by carbon at any temperature.	

Magenetite cannot be reduced by carbon at any temperature.					
○ 670°C					
Question	20		1 pi		
Zuestion	20		1 p		
	entropy chanç $H_2(g) \rightarrow C_2H$	e for the following chemical reaction at at 29	5°C?		
Substance	S° (J/K·mol)	.H _f ° (kJ/mol)			
C ₂ H ₂ (g)	200.94	226.73			
H ₂ (g)	130.68	0			
C ₂ H ₆ (g)	229.6	-84.68			
159.3 J/m	ol·K				
232.7 J/m	nol·K				
290.0 J/m	ol·K				
102.0 J/n	nol·K				
Question	21				
What is the e	enthalpy char	ge for the chemical reaction in question 20?)		
○ -311.41 k.	J/mol				
○ 311.41 kJ	/mol				
142.05 k	J/mol				
○ -538.14 k	J/mol				
Question	22		1 p		
Find the star	ndard reaction	free energy for the chemical reaction in quo	estion 20.		
○ 69,068 kJ	/mol				
○ -305.59 k	J/mol				
242.03 k					
○ 69.07 kJ/r	nol				
Question	23		1 p		

Ω ΛG° will no			
O AO WIII IIC	ot equal 0 at an	y possible temp	perature.
○ 1338 K			
○ -1338 K			
Question 2	24		1 p
Consider the	following unb	palanced equa	ation. What is the standard free energy for the reaction of 7.2 moles of Al ₂ O ₃ (s) at 298K?
$Al_2O_3(s) + C$	$O(g) \rightarrow Al(s)$) + CO ₂ (g)	
	ΔH° _f (kJ/mol)		
Al ₂ O ₃ (s)	-1676.0	50.92	
CO (g)	-110.5	197.6	
Al (s)	0.0	28.3	
CO ₂ (g)	-393.5	213.6	
○ 810 kJ			
-1.1 x 10 ⁵	kJ		
○ 5800 kJ			
○ -15,000 kJ			
	25		1 p
Question 2			
Calculate the			oroform given that the standard entropy and enthalpy of vaporization of chloroform is 93.7 J/mol-
Calculate the and 31.4 kJ/r	normal boilir		oroform given that the standard entropy and enthalpy of vaporization of chloroform is 93.7 J/mol-
and 31.4 kJ/r	normal boilir		oroform given that the standard entropy and enthalpy of vaporization of chloroform is 93.7 J/mol-
Calculate the and 31.4 kJ/r 405 K 335 K	normal boilir		oroform given that the standard entropy and enthalpy of vaporization of chloroform is 93.7 J/mol-
Calculate the and 31.4 kJ/r 405 K 335 K 375 K	normal boilir		oroform given that the standard entropy and enthalpy of vaporization of chloroform is 93.7 J/mol-
Calculate the and 31.4 kJ/r 405 K 335 K 375 K 450 K	normal boilir		oroform given that the standard entropy and enthalpy of vaporization of chloroform is 93.7 J/mol-
Calculate the and 31.4 kJ/r 405 K 335 K 375 K 450 K	e normal boilir mol, respectiv	ely.	1 p
Calculate the and 31.4 kJ/r 405 K 335 K 375 K 450 K	e normal boilir mol, respectiv	change for th	e formation reaction of CO (g) at 298 K.
Calculate the and 31.4 kJ/r 405 K 335 K 375 K 450 K	e normal boilir mol, respectiv 26 dard entropy S° (J/mol·	ely.	e formation reaction of CO (g) at 298 K.

CO (g)	197.67	-110.53				
○ 89.36 J/mol·l	<					
-13.21 J/mol	K					
-89.36 J/mol	K					
○ 13.21 J/mol·h	<					
Question 27						1 pts
What is the sta	ndard free en	ergy change for	the chemical reaction i	n question 26?		
-137.16 kJ/m	ol					
26,739.81 k	J/mol					
26,739.81 kJ	/mol					
○ 137.16 kJ/mo	ol					
Question 28						1 pts
	inum chloride ficients (i.e. n	e. What is the co o fractions)?				in space considered using hat contains only whole
<u> </u>						
<u> </u>						
<u> </u>						
<u> </u>						
Question 29						1 pts
The below table	e contains the	ermodvnamic da	ta for the chemical reac	ction in auestion 28	at 2000 K. What is Δ	∆G _{rva} at 2000 K?
Substance ΔC						TAIL TO DO S TO
AICl ₃ (g)	-467					
Al ₂ O ₃ (s)	-1034					
CIO (g)	75					
○ -700 kJ/mol r	xn					
	rxn					
-492 kJ/mol r	xn					

Question 30	1 pts
Consider the reaction in questions 28 and 29. Would this choice of reactants make a good rocket fuel?	
○ Yes	
○ No	
It depends on the entropy change of the system.	
It depends on the enthalpy change of the system.	

Question	Question 31					
Consider the	e following che	emical reactio	n. Calculate ΔG° for the reaction at 298 K.			
	$_2(g) \rightarrow COCl_2$					
Substance	ΔH° _f (kJ/mol)	S° (J/mol·K)				
CO (g)	-110.5	197.6				
Cl ₂ (g)	0	223.0				
COCl ₂ (g)	-223.0	289.2				
○ -73.3 kJ/r	mol					
○ -151.6 kJ	/mol					
○ -500.0 kJ	/mol					
39.3 kJ/r	mol					

Question 32 1 pts

Consider the following table that contains an assortment of compounds and their corresponding standard free energies of formation. Which of these liquids are thermodynamically stable? Select all of the correct answers.

Compound	Free Energy (kJ/mol)
C ₆ H ₁₂ (I)	6.4
CH ₃ OH (I)	-166
N ₂ H ₄ (I)	149
H ₂ O ₂ (I)	-120
CS ₂ (I)	65.3
	C ₆ H ₁₂ (I) CH ₃ OH (I) N ₂ H ₄ (I) H ₂ O ₂ (I)

	Hyd	Iraz	zine
--	-----	------	------

Cyclohexane	
☐ Hydrogen Peroxide	
	1 pts
Question 33	ι μισ
Ammonia (NH $_3$) gives windex and cat urine its odor. It has a ΔH°_{vap} of 23.35 kJ/mol and a ΔS°_{vap} boiling point of ammonia?	
Ammonia (NH $_3$) gives windex and cat urine its odor. It has a ΔH°_{vap} of 23.35 kJ/mol and a ΔS°_{vap}	
Ammonia (NH ₃) gives windex and cat urine its odor. It has a ΔH°_{vap} of 23.35 kJ/mol and a ΔS°_{vap} boiling point of ammonia?	

Not saved

Submit Quiz

Methanol